APOLLO AND BEYOND

SCENE	TIME	SCRIPT
INTRO	$00: 00$	INTRODUCTION Four fundamental forces control the universe. The strong and weak nuclear forces act inside atoms and molecules, like the hydrogen and oxygen atoms in a water molecule. The third force, electromagnetism, binds atoms and molecules together.
		$00: 29$
	Gravity, the fourth force, is dramatically different. You can feel gravity. It is the force of attraction connecting you to everything else in the universe. It extends across space: never going away.	
	$00: 44$	For millions of years, gravity trapped life in Earth's oceans. But eventually life defied gravity as it rode ocean waves onto the land.
	$00: 55$	By the 18th century we had built hot air balloons to carry us above the Earth's surface.

TITLES	$01: 31$	Meanwhile astronomers discovered how gravity affects the entire universe: controlling the motions of stars and the formation of galaxies. In this program we'll pay tribute to the astronauts and astronomers who defy gravity as they uncover its secrets.
PART		
OPENING TITLES		

\(\left.$$
\begin{array}{|l|l|l|}\hline 04: 05 & \begin{array}{l}\text { Imagine being the first geologists on a huge unexplored world full } \\
\text { of rocks, dust, and unsolved mysteries. The lunar soil is rocky } \\
\text { debris crushed by meteor impacts into a substance that clings to } \\
\text { everything it touches - turning space suits a dingy gray. }\end{array} \\
\hline 04: 26 & \begin{array}{l}\text { To go farther and see more, NASA invented a battery powered } \\
\text { lunar rover with wire mesh wheels - capable of exploring the Moon } \\
\text { and perhaps becoming a prototype for tomorrow's lunar dune } \\
\text { buggies. }\end{array} \\
\hline 04: 41 & \begin{array}{l}\text { This is really a rock and roll ride, isn't it? I've never been on a ride } \\
\text { like this before. Boy oh boy! I'm glad they've got this great } \\
\text { suspension system on this thing. Yahoo. Golly, this is so great you } \\
\text { can't believe it! }\end{array} \\
\hline 05: 00 & \begin{array}{l}\text { Imagine being the first humans on this barren world ... the first to } \\
\text { see a place, kick a rock, stir up dust or leave footprints and rover } \\
\text { tracks in its timeless soil. All expressions are inadequate, the } \\
\text { experience of a lifetime wrapped in a few precious hours, in a place } \\
\text { to which you can never return. }\end{array} \\
\hline & 05: 22 & \begin{array}{l}\text { "I was strolling on the Moon one day in the merry, merry month of } \\
\text { December, no May, when then much to my surprise, a pair of funny } \\
\text { eyes, te dum, te dum, te dum." }\end{array}
$$

\hline Gene Cernan, the last man to walk on the Moon, remembers...

"I slowly pivoted, trying to see everything, and was overwhelmed

by the silent, majestic solitude. Not so much as a squirrel track to

indicate any sort of life, not a green blade of grass to color the

bland, stark beauty, not a cloud overhead nor the slightest hint of a

brook or stream. But I felt comfortable, as if I belonged here. From

where I stood on the floor of that beautiful mountain-ringed valley,

the Moon seemed frozen in time."\end{array}\right\}\)| "Oh this is a neat way to travel. Isn't this great! tum te dum dum |
| :--- |
| dum, tum te dum dum dum, tum te dum dum dum. I like to skip |
| along. Not me boy. Gene, I'm going to take that SEB number two |
| and my camera and I'm heading home. OK, Boy is this fun." |

\(\left.$$
\begin{array}{|l|l|l|}\hline 00: 00 & \begin{array}{l}\text { On December 14, 1972, Apollo } 17 \text { left the Taurus-Littrow valley } \\
\text { and headed back to Earth. } \\
\text { "Three, two, one, ignition. We're on our way, Houston." }\end{array} \\
\hline \text { PART } 2 & 07: 21 & \begin{array}{l}\text { This would be the last time in } 50 \text { years for humans to leave Earth's } \\
\text { gravity field. }\end{array}
$$

\hline the International Space Station, but no one has conquered the

Earth's gravity pull since Apollo.\end{array}\right\}\)| Spacecraft Present \& Future |
| :--- |$|$| PART 3 |
| :--- |

09:29	This time we are here to stay. Soon there will be a new space station, orbiting the Moon: a Lunar Orbital Platform called the Gateway. This is a research station and a jumping off point for astronauts traveling to other worlds. Astronauts on the Gateway will be the first humans to defy Earth's gravity for an extended period by living in a space station in lunar orbit. The Gateway is an all-in-one solar-powered communications hub, science laboratory, outpost, and supply center -- as well as a staging point for lunar exploration and eventually for journeys to other worlds like Mars. Following Gateway, our next gravity challenge could be the construction of a lunar colony - permanently defying Earth's hold on life.	
$10: 45$	A world with only a sixth of Earth's surface gravity cannot hold onto an atmosphere. Without air to fly through, our lunar transport has no need for wings or a nose cone. Jets will do all of the maneuvering.	
$11: 05$	The airless Moon is frozen in time. Here wind and water have not erased the impacts of rocky asteroids and icy comets. The Moon is a museum, preserving the scars of dramatic events in our solar system's past.	
	$11: 22$	Our destination is the dark cratered terrain of the Moon's South Pole. Here the sun circles the horizon each month and its light never reaches deep crater floors.

$12: 50$	We will live in an enclosed biosphere - with a recycled atmosphere, balanced for humans and plants. At the South Pole, the low sun circles the horizon once every month, providing uniform light and energy. Glass panels shield colonists from the most dangerous solar radiation, while holding in air and water.	
PART 4	$13: 26$	On a low gravity world without weather, our buildings can be lightweight and easily constructed. If you jump into that pond, your splash would be 6 times higher than an Earth splash. Here trees absorb carbon dioxide and provide oxygen to breathe. We will also plant vegetable gardens to grow our food.
$13: 51$	On the low-gravity Moon, we lose most of our weight. In the air of this dome, humans wearing wings can actually fly, gliding like the flying pterosaurs of Earth long ago.	

$15: 54$	On Mercury you would lose about 2/3rds of your weight and could easily zip line across a crater.	
$16: 11$	On Venus, the surface gravity is about the same as Earth's, but you would have to live in the clouds, above the planet's toxic, scorched surface.	
$16: 25$	On Mars, your lighter weight would make it easy to rappel into the canyons of the Valles Marineris, one of the planet's most dramatic surface features.	
		$16: 42$

	$21: 10$	When the core of a massive star collapses, its intense gravity can produce an escape velocity surpassing the speed of light. We use the term Black Hole to describe such an object. A black hole's gravity traps everything, even light. Although we cannot see a black hole, we can observe how its gravity pulls on any visible companion.
PART 6		$21: 38$
Script		We have recently confirmed another characteristic of gravity: the production of gravitational waves by orbiting objects. In 2017, our Ligo detectors measured the gravitational waves produced by two very dense orbiting neutron stars.
Score and Audio	$21: 56$	As the neutron stars moved closer together, the increased gravity pull caused them to orbit faster and emit stronger gravitational waves. This process led to a cataclysmic collision called a kilonova. This kilonova produced gravitational waves rippling across space and through the Earth. We detected our planet trembling slightly as the space time warp of gravitational waves passed by. At a distance of 130 million light years, the gravitational waves from this event generated a space-time distortion less than the width of a hydrogen atom.
Narration	$24: 21$	Jim Bratton Walter Cronkite Gene Cernan and the Apollo Astronauts on the Lunar Surface
		Carolyn Sumners
		Gravity causes spacetime to vibrate and undulate like an object falling into water. Gravitation waves are kinks or ripples in the cosmic spacetime ocean.
		Fish-I Studios

Post-Production		Shai Fishman Animation Adam Barnes Tony Butterfield Geoffrey Baring Will Yokley
		Home Run Pictures Tom Casey Gerry Crouse
Other Animation	Rice University Don Davis - Animation	
Photography	Evans \& Sutherland The Illustris Collaboration The eXtreme Gravity Institue at Montana State University	
Partial Support	Apollo Astronauts on the Moon Shuttle Astronauts on the International Space Station Massachusetts Institute of Technology Charles Hayden Planetarium at the Museum of Science, Boston	
Copyright	NASA Future Space Grant 09-2009CP4SMP-0047 Awarded to the Louisiana Art and Science Museum	
	Houston Museum of Natural Science	
	$25: 01$	

